
 Concept of hierarchical memory   

 

A memory is just like a human brain. It is used to store data and instructions. Computer 
memory is the storage space in the computer, where data is to be processed and 
instructions required for processing are stored. The memory is divided into large 
number of small parts called cells. Each location or cell has a unique address, which 
varies from zero to memory size minus one. For example, if the computer has 64k 
words, then this memory unit has 64 * 1024 = 65536 memory locations. The address of 
these locations varies from 0 to 65535. 

Memory is primarily of three types − 

 Cache Memory 

 Primary Memory/Main Memory 

 Secondary Memory 

Cache Memory 

Cache memory is a very high speed semiconductor memory which can speed up the 
CPU. It acts as a buffer between the CPU and the main memory. It is used to hold 
those parts of data and program which are most frequently used by the CPU. The parts 
of data and programs are transferred from the disk to cache memory by the operating 
system, from where the CPU can access them. 

 

Advantages 

The advantages of cache memory are as follows − 



 Cache memory is faster than main memory. 

 It consumes less access time as compared to main memory. 

 It stores the program that can be executed within a short period of time. 

 It stores data for temporary use. 

Disadvantages 

The disadvantages of cache memory are as follows − 

 Cache memory has limited capacity. 

 It is very expensive. 

Primary Memory (Main Memory) 

Primary memory holds only those data and instructions on which the computer is 
currently working. It has a limited capacity and data is lost when power is switched off. 
It is generally made up of semiconductor device. These memories are not as fast as 
registers. The data and instruction required to be processed resides in the main 
memory. It is divided into two subcategories RAM and ROM. 

 

Characteristics of Main Memory 

 These are semiconductor memories. 

 It is known as the main memory. 

 Usually volatile memory. 

 Data is lost in case power is switched off. 

 It is the working memory of the computer. 

 Faster than secondary memories. 

 A computer cannot run without the primary memory. 

Secondary Memory 



This type of memory is also known as external memory or non-volatile. It is slower than 
the main memory. These are used for storing data/information permanently. CPU 
directly does not access these memories, instead they are accessed via input-output 
routines. The contents of secondary memories are first transferred to the main 
memory, and then the CPU can access it. For example, disk, CD-ROM, DVD, etc. 

 

Characteristics of Secondary Memory 

 These are magnetic and optical memories. 

 It is known as the backup memory. 

 It is a non-volatile memory. 

 Data is permanently stored even if power is switched off. 

 It is used for storage of data in a computer. 

 Computer may run without the secondary memory. 

 Slower than primary memories. 

RAM (Random Access Memory) is the internal memory of the CPU for storing data, 
program, and program result. It is a read/write memory which stores data until the 
machine is working. As soon as the machine is switched off, data is erased. 

 



Access time in RAM is independent of the address, that is, each storage location inside 
the memory is as easy to reach as other locations and takes the same amount of time. 
Data in the RAM can be accessed randomly but it is very expensive. 

RAM is volatile, i.e. data stored in it is lost when we switch off the computer or if there 
is a power failure. Hence, a backup Uninterruptible Power System (UPS) is often used 
with computers. RAM is small, both in terms of its physical size and in the amount of 
data it can hold. 

RAM is of two types − 

 Static RAM (SRAM) 

 Dynamic RAM (DRAM) 

Static RAM (SRAM) 

The word static indicates that the memory retains its contents as long as power is 

being supplied. However, data is lost when the power gets down due to volatile nature. 
SRAM chips use a matrix of 6-transistors and no capacitors. Transistors do not require 
power to prevent leakage, so SRAM need not be refreshed on a regular basis. 

There is extra space in the matrix, hence SRAM uses more chips than DRAM for the 
same amount of storage space, making the manufacturing costs higher. SRAM is thus 
used as cache memory and has very fast access. 

Characteristic of Static RAM 

 Long life 

 No need to refresh 

 Faster 

 Used as cache memory 

 Large size 

 Expensive 

 High power consumption 

Dynamic RAM (DRAM) 

DRAM, unlike SRAM, must be continually refreshed in order to maintain the data. This 

is done by placing the memory on a refresh circuit that rewrites the data several 
hundred times per second. DRAM is used for most system memory as it is cheap and 
small. All DRAMs are made up of memory cells, which are composed of one capacitor 
and one transistor. 

Characteristics of Dynamic RAM 

 Short data lifetime 

 Needs to be refreshed continuously 



 Slower as compared to SRAM 

 Used as RAM 

 Smaller in size 

 Less expensive 

 Less power consumption 

ROM stands for Read Only Memory. The memory from which we can only read but 
cannot write on it. This type of memory is non-volatile. The information is stored 
permanently in such memories during manufacture. A ROM stores such instructions 
that are required to start a computer. This operation is referred to as bootstrap. ROM 

chips are not only used in the computer but also in other electronic items like washing 
machine and microwave oven. 

 

Let us now discuss the various types of ROMs and their characteristics. 

MROM (Masked ROM) 

The very first ROMs were hard-wired devices that contained a pre-programmed set of 
data or instructions. These kind of ROMs are known as masked ROMs, which are 
inexpensive. 

PROM (Programmable Read Only Memory) 

PROM is read-only memory that can be modified only once by a user. The user buys a 
blank PROM and enters the desired contents using a PROM program. Inside the 
PROM chip, there are small fuses which are burnt open during programming. It can be 
programmed only once and is not erasable. 

EPROM (Erasable and Programmable Read Only Memory) 



EPROM can be erased by exposing it to ultra-violet light for a duration of up to 40 
minutes. Usually, an EPROM eraser achieves this function. During programming, an 
electrical charge is trapped in an insulated gate region. The charge is retained for more 
than 10 years because the charge has no leakage path. For erasing this charge, ultra-
violet light is passed through a quartz crystal window (lid). This exposure to ultra-violet 
light dissipates the charge. During normal use, the quartz lid is sealed with a sticker. 

EEPROM (Electrically Erasable and Programmable Read Only Memory) 

EEPROM is programmed and erased electrically. It can be erased and reprogrammed 
about ten thousand times. Both erasing and programming take about 4 to 10 ms 
(millisecond). In EEPROM, any location can be selectively erased and programmed. 
EEPROMs can be erased one byte at a time, rather than erasing the entire chip. 
Hence, the process of reprogramming is flexible but slow. 

Advantages of ROM 

The advantages of ROM are as follows − 

 Non-volatile in nature 

 Cannot be accidentally changed 

 Cheaper than RAMs 

 Easy to test 

 More reliable than RAMs 

 Static and do not require refreshing 

 Contents are always known and can be verified 

 

Memory Hierarchy Design and its Characteristics 

In the Computer System Design, Memory Hierarchy is an enhancement to organize the memory such that 
it can minimize the access time. The Memory Hierarchy was developed based on a program behavior 
known as locality of references.The figure below clearly demonstrates the different levels of memory 
hierarchy : 



 

This Memory Hierarchy Design is divided into 2 main types: 

1. External Memory or Secondary Memory – 
Comprising of Magnetic Disk, Optical Disk, Magnetic Tape i.e. peripheral storage devices which are 
accessible by the processor via I/O Module. 

2. Internal Memory or Primary Memory – 
Comprising of Main Memory, Cache Memory & CPU registers. This is directly accessible by the 
processor. 

We can infer the following characteristics of Memory Hierarchy Design from above figure: 

1. Capacity: 
It is the global volume of information the memory can store. As we move from top to bottom in the 
Hierarchy, the capacity increases. 

2. Access Time: 
It is the time interval between the read/write request and the availability of the data. As we move 
from top to bottom in the Hierarchy, the access time increases. 

3. Performance: 
Earlier when the computer system was designed without Memory Hierarchy design, the speed gap 
increases between the CPU registers and Main Memory due to large difference in access time. This 
results in lower performance of the system and thus, enhancement was required. This enhancement 
was made in the form of Memory Hierarchy Design because of which the performance of the system 
increases. One of the most significant ways to increase system performance is minimizing how far 
down the memory hierarchy one has to go to manipulate data. 

4. Cost per bit: 
As we move from bottom to top in the Hierarchy, the cost per bit increases i.e. Internal Memory is 
costlier than External Memory. 

 

 



Byte Addressable : 

The smallest unit of information is known as bit (binary digit), and in one memory cell we can store one bit of 
information. 8 bit together is termed as a byte. 
 
The maximum size of main memory that can be used in any computer is determined by the addressing scheme. 
A computer that generates 16-bit address is capable of addressing upto 216  which is equal to 64K memory location.  
 
Similarly, for 32 bit addresses, the total capacity will be 232 which is equal to 4G memory location. 
In some computer, the smallest addressable unit of information is a memory word and the machine is called word-
addressable. 

In some computer, individual address is assigned for each 
byte of information, and it is called byte-addressable 

computer. In this computer, one memory word contains 
one or more memory bytes which can be addressed 
individually. 

A byte addressable 32-bit computer, each memory word 
contains 4 bytes. A possible way of address assignment is 
shown in figure3.1. The address of a word is always 
integer multiple of 4. 

The main memory is usually designed to store and retrieve 
data in word length quantities. The word length of a 
computer is generally defined by the number of bits 
actually stored or retrieved in one main memory access. 

Consider a machine with 32 bit address bus. If the word 
size is 32 bit, then the high order 30 bit will specify the 
address of a word. If we want to access any byte of the 
word, then it can be specified by the lower two bit of the 
address bus. 

  

 
Figure 3.1:Address assignment to a 

4-byte word 

 

The data transfer between main memory and the CPU takes place through two CPU registers. 

 MAR :   Memory Address Register 

 MDR :   Memory Data Register. 

Function of MDR & MAR 

If the MAR is k-bit long, then the total addressable memory location will be 2k. 

If the MDR is n-bit long, then the n bit of data is transferred in one memory cycle. 

The transfer of data takes place through memory bus, which consist of address bus and data bus. In the above 
example, size of data bus is n-bit and size of address bus is k bit. 



It also includes control lines like Read, Write and Memory Function Complete (MFC) for coordinating data transfer. In 
the case of byte addressable computer, another control line to be added to indicate the byte transfer instead of the 
whole word. 

For memory operation, the CPU initiates a memory operation by loading the appropriate data i.e., address to MAR. 

If it is a memory read operation, then it sets the read memory control line to 1. Then the contents of the memory 
location is brought to MDR and the memory control circuitry indicates this to the CPU by setting MFC to 1. 

If the operation is a memory write operation, then the CPU places the data into MDR and sets the write memory 
control line to 1. Once the contents of MDR are stored in specified memory location, then the memory control circuitry 
indicates the end of operation by setting MFC to 1. 

A useful measure of the speed of memory unit is the time that elapses between the initiation of an operation and the 
completion of the operation (for example, the time between Read and MFC). This is referred to as Memory Access 

Time. Another measure is memory cycle time. This is the minimum time delay between the initiation two independent 
memory operations (for example, two successive memory read operation). Memory cycle time is slightly larger than 
memory access time. 

 

The storage part is modelled here with SR-latch, but in reality it is an electronics circuit made up of transistors. 
The memory consttucted with the help of transistors is known as semiconductor memory. The semiconductor 
memories are termed as Random Access Memory(RAM), because it is possible to access any memory location in 
random. 
Depending on the technology used to construct a RAM, there are two types of RAM - 

SRAM: StaticRandomAccessMemory. 
DRAM: Dynamic Random Access Memory. 

Dynamic Ram (DRAM):A DRAM is made with cells that store data as charge on capacitors. The presence or 
absence of charge in a capacitor is interpreted as binary 1 or 0. 
Because capacitors have a natural tendency to discharge due to leakage current, dynamic RAM require periodic 
charge refreshing to maintain data storage. The term dynamic refers to this tendency of the stored charge to leak 
away, even with power continuously applied. 
Static RAM (SRAM): 

In an SRAM, binary values are stored using traditional flip-flop constructed with the help of transistors. A static RAM 
will hold its data as long as power is supplied to it. 
SRAM Versus DRAM : 

 Both static and dynamic RAMs are volatile, that is, it will retain the information as long as power supply is 
applied. 

 

 A dynamic memory cell is simpler and smaller than a static memory cell. Thus a DRAM is more dense, 
i.e., packing density is high(more cell per unit area). DRAM is less expensive than corresponding SRAM. 

 

 DRAM requires the supporting refresh circuitry. For larger memories, the fixed cost of the refresh circuitry is 
more than compensated for by the less cost of DRAM cells 

 



 SRAM cells are generally faster than the DRAM cells. Therefore, to construct faster memory modules(like 
cache memory) SRAM is used. 

 

Internal Organization of Memory Chips                    

A memory cell is capable of storing 1-bit of information. A number of memory cells are organized in the form of a 
matrix to form the memory chip. One such organization is shown in the Figure 3.5. 

                 
                                                Figure 3.5: 16 X 8 Memory Organization 

 

Each row of cells constitutes a memory word, and all cell of a row are connected to a common line which is referred 
as word line. An address decoder is used to drive the word line. At a particular instant, one word line is enabled 
depending on the address present in the address bus. The cells in each column are connected by two lines. These 
are known as bit lines. These bit lines are connected to data input line and data output line through a Sense/Write 
circuit. During a Read operation, the Sense/Write circuit sense, or read the information stored in the cells selected by 
a word line and transmit this information to the output data line. During a write operation, the sense/write circuit 
receive information and store it in the cells of the selected word. 

A memory chip consisting of 16 words of 8 bits each, usually referred to as 16 x 8 organization. The data input and 
data output line of each Sense/Write circuit are connected to a single bidirectional data line in order to reduce the pin 
required. For 16 words, we need an address bus of size 4. In addition to address and data lines, two control 

lines,  and CS, are provided. The  line is to used to specify the required operation about read or write. 
The CS (Chip Select) line is required to select a given chip in a multi chip memory system. 
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8. The Memory Hierarchy (2) - The Cache 

 

The uppermost level in the memory hierarchy of any modern computer is 

the cache. It first appeared as the memory level between the CPU and the 

main memory. It is the fastest part of the memory hierarchy, and the 

smallest in dimensions. 

 

Many modern computers have more than one cache, it is common to find 

an instruction cache together with a data cache. and in many systems the 

caches are hierarchy structured by themselves: most microprocessors in the 

market today have an internal cache, with a size of a few KBytes, and 

allow an external cache with a much larger capacity, tens to hundreds of 

KBytes. 

 

 
 Some Values 

 
There is a large variety of caches with different parameters. Below are 

listed some of the parameters for the external cache of a DEC 7000 system 

which is built around the 21064 ALPHA chip: 
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Block offset Block-frame address 

Example 8.1 MEMORY ADDRESS: 

 

What is the size of the two fields in an address if the address size is 32 bits 

and the block is 16 Byte wide? 

 

 

 
Block size (line size) 64 Bytes 

Hit time 5 clock cycles 

Miss penalty 340 ns 

Access time 280 ns 

Transfer time 60 ns 

Cache size 4 MBytes 

CPU clock rate 182 MHz 

 

 

 Placing a block in the cache 

 
Freedom of placing a block into the cache ranges from absolute, when the 

block can be placed anywhere in the cache, to zero, when the block has a 

strictly predefined position. 

 

• a cache is said to be directly mapped if every block has a unique, 

predefined place in the cache; 
 

• if the block can be placed anywhere in the cache the cache is said 

to be fully associative; 
 

•  if the block can be placed in a restricted set of places then the 

cache is called set associative. A set is a group of two or more 

blocks; a block belongs to some predefined set, but inside the set it 

can be placed anywhere. If a set contains n blocks then the cache 

is called n-way set associative. 

 
 

Obviously direct-mapped and fully-associative are particular names for a 

1-way set associative and k-way set associative (for a cache with k blocks) 

respectively. 

 

Transfers between the lower level of the memory and the cache occur in 

blocks: for this reason we can see the memory address as divided in two 

fields: 
 

MSB LSB 
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Example 8.2 POSITION OF BLOCKS: 

 

A CPU has a 7 bit address; the cache has 4 blocks 8 bytes each. The CPU 

addresses the byte at address 107. Suppose this is a miss and show where 

will be the corresponding block placed. 

 

 

 
 

The usual way to map blocks to positions in the cache is: 

 

• for a direct mapped cache: 

index = (Block-frame address) modulo (number of blocks in the 

cache); 
 

• for a set associative cache: 

index = (block-frame address) modulo (number of sets in the 

cache). 

 
For a cache that has a power of two blocks (suppose 2m blocks), finding the 

position is a direct mapped cache is trivial: position (index) is indicated by 

the last (the least significant) log2m bits of the block-frame address. 

 
For a set associative cache that has a power of two sets (suppose 2k sets), 

the set where a given block has to be mapped is indicated by the last (the 

least significant) log2k bits of the block-frame address. 

 
The address can be viewed as having three fields: the block-frame address 

is split into two fields, the tag and the index, plus the block offset address: 

 
Tag Index Block offset 

MSB LSB 

In the case of a direct mapped cache the index field specifies the position of 

the block in the cache. For a set associative cache the index fields specifies 

in which set the block belongs. As for a fully associative cache this field 

has zero length. 

Answer: 

Assuming that the memory is byte addressable there are 4 bits necessary to 

specify the position of the byte in the block. The other 28 bits in the 

address identify a block in the lower level of the memory hierarchy. 

 
0000 0000 0000 0000 0000 0000 0011 1101 

MSB LSB 

 
The address above refers to block number 3 in the lower level; inside that 

block the byte number 13 will be accessed. 
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Figure 8.2 is a graphical representation for this example. Figures 8.1 and 

 are graphical representations of the same problem we have in example 

 but for fully associative and set associative caches respectively. 

 

Because the cache is smaller than the memory level below it, there are 

several blocks that will map to the same position in the cache; using the 

Example 8.2 it is easy to see that blocks number 1, 5, 9, 13 will all map to 

the same position. The question now is: how can we determine if the block 

in the memory is the one we are looking for, or not? 

 

 
 Finding a Block in the Cache 

 
Each line in the cache is augmented with a tag field that holds the tag field 

of the address corresponding to that block. When the CPU issues an 

address, there are, possibly, several blocks in the cache that could contain 

the desired information. The one will be chosen that has the same tag as 

that of the address issued by the CPU. 

 

Figure 8.4 presents the same cache we had in figures 8.1 to 8.3, improved 

with the tag fields. In the case of a fully associative cache all tags in the 

cache must be checked against the address's tag field; this because in a fully 

associative cache blocks may be placed anywhere. Because the cache must 

be very fast, the checking process must be done in parallel, all cache's tags 

Answer: 

(107)10 = (1101011)2 

With an 8 bytes block the least significant three bits of the address (011) are 

used to indicate the position of a byte within a block. 

The most significant four bits ((1101)2 = 1310) represent the block-frame 

address, i.e. the number of the block in the lower level of the memory. 

Because it is a direct mapped cache, the position of block number 13 in the 

cache is given by: 

 

(Block-frame address) modulo (number of blocks in the cache) 

= 13 mod 4 = 1 

 

Hence the block number 13 in the lower level of the memory hierarchy will 

be placed in position 1 into the cache. This is precisely the same as using 

the last 

 

log24 = 2 

bits (01), the index, of the block-frame address (1101). 
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must be compared at the same time with the address tag fields. For a set 

associative cache there is less work than in a fully associative cache: there 

is only one set in which the block can be; therefore only the tags of the 

blocks in that set have to be compared against the address tag field. 

 

If the cache is direct mapped, the block can have only one position in the 

cache: only the tag of that block is compared with the address tag field. 

 

There must also be a way to indicate the content of a block must be 

ignored. When the system starts up for instance, there will be some binary 

configurations in every tag of the cache; they are meaningless at this 

moment; however some of them could match the tag of an address issued 

by the processor thus delivering bad data. The solution is a bit for every 

cache line, which indicates if that line contains valid data. This bit is called 

the valid bit and is initialized to Non-valid (0) when the system starts up. 

 
Figure 8.5 presents a direct mapped cache schematic; a comparator 

(COMP) is used to check if the Tag field of the CPU address matches the 

content of the tag field in the cache at address Index. The valid bit at that 

address must be Valid (1) to have a hit when the tags are the same. The 

multiplexor (MUX) at the Data outputs is used to select that part of the 

block we need. 

 
Figure 8.6 presents the status of a four line, direct mapped cache, similar to 

the one we had in Example 8.2 after a sequence of misses; suppose that 

after reset (or power-on), the CPU issues the following sequence of reads at 

addresses (in decimal notation): 78, 79, 80, 77, 109, 27, 81. Hits don't 

change the state of the cache when only reads are performed; therefore 

only the state of the cache after misses is presented in Figure 8.6. Below is 

the binary representation of addresses involved in the process: 
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Index 
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1 
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3 

 

 

 

 

 

 
Block 
Number 

 
0 

 

1 

 

 

 

 

 

 

 

 

 

 

 

13 

 

 

15 

 
Fully associative cache 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Block 13 can go 
anywhere in the cache 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Lower level in memory hierarchy 

 

FIGURE 8.1 A fully associative four blocks (lines) cache connected to a 16 blocks. 
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Number 

 
0 

 

1 

 

 

 

 

 

 

 

 

 

 

 

13 

 

 

15 

 
 

Direct mapped cache 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Block 13 can go 
only in position 1 
(13 mod 4) in the 
cache 

 

 

FIGURE 8.2 A Direct mapped, four blocks (lines) cache connected to a 16 blocks memory. 
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0 
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13 

 

 

15 

 

 
Set 0 

 
Set 1 

 
Set associative cache 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Block 13 goes to 
set 1 (13 mod 2); 
in the set 1 it can 
occupy any position 

 

 

FIGURE 8.3 A 2-way set-associative cache connected to a 16 blocks memory. 
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Set 0 

 

 

 
 

Set 1 

 

 

 
 
Fully associative; all tags 
must be compared. The 
searched block is found 
at index 3. 

 

 

 

 

 

 

 

 
 

For a set associative cache 
the block can be in only one 
set; only the tags of that set 
must be checked 

 

 

 

 

 

 

 

 
 

In a direct mapped cache 
only one tag must be 
compared with the address 
tag field. 

 

 

 

 

 

 

 

 

FIGURE 8.4 Finding a block in the cache implies comparing the tag field of the actual address with the 

content of one or more tags in the cache. 
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Example 8.3 COMPUTATION OF MEMORY REQUIRED BY A CACHE: 

 

A 16 KB cache is being designed for a 32 bit system. The block size is 16 

bytes, and the cache is direct mapped. Which the total amount of memory 

needed to implement this cache? 

 

Answer: 

The cache will have a number of lines equal with: 

cache capacity 16KB 
----------------------------------      =  --------------      =  1 KB  =  2 lines 

10 

blocksize 16 B 

 

 
 

Address Tag Index Block offset 

78 

79 

80 

77 

109 

27 

81 

 
• Address 78: miss because the valid bit is 0 (Not Valid); a block is 

brought and placed into the cache in position Index = 01 
 

•  Address 79: hit; as Figure 8.6.b points out the content of this 

memory address is already in the cache 

 

• Address 80: miss because the valid bit at index 10 in the cache is 0 

(Not Valid); a block is brought into the cache and placed at this 

index. 

 

• Address 77: hit, found at index 01 in the cache. 

 

•  Address 109: miss; the block being transferred from the lower 

level of the hierarchy is placed in the cache at index 01, thus 

replacing the previous block. 

 

• Address 27: miss; block transferred into the cache at index 11. 

 

• Address 81: hit; the item is found in the cache at index 10. 

 

It is a common mistake to neglect the tag field when computing the amount 

of memory necessary for a cache. 
 

10 01 110 

10 01 111 

10 10 000 

10 01 101 

11 01 101 

00 11 011 

10 10 001 
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 Replacing Policies 

 
Or in other words, answering the question “which block should go out in 

the case of a cache miss?”. The replacing policy depends upon the type of 

cache. For a direct mapped cache the decision is very simple: because a 

block can go in only one place, the block in that position will be replaced. 

This simplifies the hardware (remember that a cache is hardware 

managed). 

 
For fully associative and set-associative caches a block may go in several 

positions (at different indexes), and, as a result, there are different 

possibilities to choose a block that will be replaced. Note that, due to the 

high hit rates in the caches (high hit rates are a must for good access times), 

the decision is painful, with a high probability we will replace blocks that 

contain useful information. 

 
The most used policies for replacement are: 

 

•  random: this technique is very simple, one block is selected at 

random and replaced. 

 

•  LRU (Least Recently Used): in this approach accesses to the 

cache are recorded; the block that will be replaced is the one that 

has been unused (unaccessed) for the longest period of time. This 

technique is a direct consequence of the temporal locality 

principle: if blocks tend to be accessed again soon then it seems 

natural to discard the one that has been of little use in the past. 

Hence the number of bits in the index field of an address is 10. The tag field 
in an address is: 

 

32 - 3 - 10 = 19 bits(3 bits are needed as block offset) 

Each line in the cache needs a number of bits equal to: 

1 + 19 + 16 * 8 = 148 bits 

The total amount of memory for the cache is: 

 

line_size * number_of_lines = 148 * 210 = 151.5 Kbit = 18.9 KB roughly 

This figure is by 18% larger than the “useful” size of the cache, and is 

hardly negligible. 
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FIGURE 8.5 a direct mapped cache schematic. 
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Index V Tag   Data  

00 0          

01 0          

10 0          

11 0          

a. The initial state of cache after power on. The Tag and Data fields contain some 
arbitrary binary configurations which are not shown. 

 

 
 

Index 

00 
01 

10 

11 

 

V Tag Data 
0          

1 10 M[72] M[73] M[74] M[75] M[76] M[77] M[78] M[79] 

0          

0          

b. After the miss at address 78. 

 

 

 

 
 

0          

1 10 M[72] M[73] M[74] M[75] M[76] M[77] M[78] M[79] 

1 10 M[80] M[81] M[82] M[83] M[84] M[85] M[86] M[87] 

0          

c. After the miss at address 80. 

 

 

 
Index V Tag   Data  

00           

01           

10           

11           

d. After the miss at address 109. The previous block at index 01 has been replaced. 

 

 

 
 

Index V Tag    Data  

00 0          

01 1 11 M[104] M[105] M[106] M[107] M[108] M[109] M[110] M[111] 

10 1 10 M[80] M[81] M[82] M[83] M[84] M[85] M[86] M[87] 

11 1 00 M[24] M[25] M[26] M[27] M[28] M[29] M[30] M[31] 

e. After the miss at address 27. 

FIGURE 8.6 The cache after handling the sequence of addresses: 78 (miss), 79 (hit), 
80 (miss), 77 (hit), 109 (miss), 81 (hit). 

0          

1 11 M[104] M[105] M[106] M[107] M[108] M[109] M[110] M[111] 

1 10 M[80] M[81] M[82] M[83] M[84] M[85] M[86] M[87] 

0          

 

Index V Tag   Data  

00           

01           

10           

11           
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• FIFO (First In First Out): the oldest block in the cache (or in the 

set for a set associative cache) is selected for replacement. This 

policy does not take into account the addressing pattern in the 

past: it may happen the block has been heavily used in the 

previous addressing cycles, and yet it is chosen for replacement. 

The FIFO policy is outperformed by the random policy which has, 

as a plus, the advantage of being easier to implement. 

 
As a matter of fact, almost all cache implementations use either random or 

LRU for block replacement decision. The LRU policy delivers slightly 

better performance than random, but it is more difficult to implement: at 

every access the least recently used block must be determined and marked 

somehow. For instance, each block could have associated a hardware 

counter (a software one would be too slow), called age counter; when a 

block is addressed its counter is set to zero, and all other ones are 

incremented by one. When a block must be replaced, the decision block 

must find the block with the highest value in its age counter. Obviously the 

hardware resources are more expensive than for a random policy, and, what 

is worse, the algorithm is complicated enough to slow down the cache, as 

compared with a random decision. 
 

Example 8.4 CONTENTS OF A CACHE: 

 

Consider a fully associative four block cache, and the following stream of 

block-frame addresses: 2, 3, 4, 2, 5, 2, 3, 1, 4, 5, 2, 2, 2, 3. Show the content 

of the cache in two cases: 

a) using a LRU algorithm for replacing blocks; 

b) using a FIFO policy. 

 

Answer: 

 

For the LRU replacement policy: 

 

Address: 

2 3 4 2 5 2 3 1 4 5 2 2 2 3 

 21 22 23 21 22 21 22 23 24 51 52 53 54 55 

 31 32 33 34 35 31 32 33 34 21 21 21 22 

  41 42 43 44 45 11 12 13 14 15 16 31 

    51 52 53 54 41 42 43 44 45 46 

 M M M  M   M M M M   M 
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For the FIFO policy: 

Address: 
2 3 4 2 5 2 3 1 4 5 2 2 2 3 

 2* 2* 2* 2* 2* 2* 2* 1 1 1 1 1 1 1 

 3 3 3 3 3 3 3* 3* 3* 2 2 2 2 

  4 4 4 4 4 4 4 4 4* 4* 4* 3 

    5 5 5 5 5 5 5 5 5 5* 

M M M M M M M 

 
For the LRU policy, the subscripts indicate the age of the blocks in the 

cache. For the FIFO policy a star is used to indicate which is the next block 

to be replaced. The Ms under the columns of tables indicate the misses. 

 

For the short sequence of block-frame addresses in this example, the FIFO 

policy yields a smaller number of misses, 7 as compared with 9 for the 

LRU. However in most cases the LRU strategy proves to be better than 

FIFO. 

 
 

 Cache Write Policies 
 

So far we have discussed about how reads are handled in a cache. Writes 

are more difficult and affect the performance more than reads do. If we take 

a closer look at the block scheme in Figure 8.5 we realize that, in the case 

of a read, the two basic operations are performed in parallel: the tag and 

reading the block are read at the same time. Further, the tags must be 

compared, and the delay in the comparator (COMP) is slightly higher then 

the delay through the multiplexor (MUX): if we have a hit then the data is 

already stable at the cache's outputs; if there a miss there is no harm in 

reading some improper data from the cache, we simply ignore it. 

 
When we come to writes we realize that the sequence of operations is 

longer than for a read: the problem is that, for most caches, only a part of 

the block will be modified; if the block is 16 Bytes wide, and the CPU 

writes a byte, then only that byte must be changed. This implies a read- 

modify-write sequence in the cache: read the whole block, modify the 

needed portion, write the new configuration of the block. Of course the 

block can not be changed until a hit/miss decision is taken. 

 
There are two options when writing into the cache, depending upon how 

the information in the lower lever of the hierarchy is updated: 

 

• write through: the item is written both into the cache and into the 

corresponding block in the lower level of the hierarchy; as a 
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result, the blocks in the lower level of the hierarchy contains at 

every moment the same information as the blocks in the cache; 

 

• write back: writes occur only in the cache; the modified block is 

written into the lower level of the hierarchy only when it has to be 

replaced. 

 

With the write-back policy there is useless to write back a block (i.e. to 

write a block into the lower level of the hierarchy) if the block has not been 

modified while in the cache. To keep track if a block was modified or not, a 

bit, called the dirty bit, is used for every block in the cache; when the 

block is brought into the cache this bit is set to Not-dirty (0); the first write 

in that block sets the bit to Dirty (1). When the replacement decision is 

taken, the control checks if the block is dirty or clean. If the block is dirty it 

has to be to the lower level of the memory; otherwise a new block coming 

from the lower level of the hierarchy can simply overwrite that block in the 

cache. 

 
For fully or set associative caches, where several bocks may candidate for 

replacement, it is common to prefer the one which is clean (if any), thus 

saving the time necessary to transfer a block from the cache to the lower 

level of the memory. 

 

The two cache write policies have their advantages and disadvantages: 

 

•  write through: this is easy to implement, and has the advantage 

that the memory has the most recent value of data; this property is 

especially attractive in multiprocessing and I/O. The drawback is 

that writes going to the lower level in memory are slower. When 

the CPU has to wait for a write to complete it is said to write stall. 

A simple way to reduce write stalls is to have a write buffer. 

which allows CPU to continue working while the memory is 

updated; this works fine as long as the rate at which writes occur is 

lower than the rate at which transfers from the buffer to the 

memory can be done. 

 
• write back: is more difficult to implement but has the advantage 

that writes occur at the cache's speed; moreover writes are local to 

the cache and don't require access to the system bus, unless a dirty 

block has to be transferred from the cache to the memory. So this 

write policy uses less memory bandwidth, which is attractive for 

multiprocessing where several CPUs share the system's resources. 

Another disadvantage, besides greater hardware complexity, is 

that read misses may require writes to the memory, in the case a 

block has to be transferred into the lower level of the hierarchy. 
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Example 8.5 CPU PERFORMANCE WITH CACHE: 

 

The average execution time for instructions in some CPU is 7 (ignoring 

stalls); the miss penalty is 10 clock cycles, the miss rate is 5%, and there 

are, on average, 2.5 memory accesses per instruction. What is the CPU 

performance if the cache is taken into account? 

 

Answer: 
CPUtime = IC*(CPIexec + Mem_accesses_per_instruction*miss_rate*miss_penalty)*Tck 

 

 

 

 The Cache Performance 
 

As we discussed very early in this course, the ultimate goal of a designer is 

to reduce the CPUtime for a program. When connected with a memory, we 

must account both for the execution time of the CPU and for its stalls: 

 

CPUtime = (CPUexec + Memory_stalls) * Tck 

 
where both the execution time and stalls are expressed in clock cycles. 

 

Now the natural question we may ask is: do we include the cache access 

time in the CPUexec or in Memory_stalls? Both ways are possible: it is 

possible to consider the cache access time in Memory_stalls, simply 

because the cache is a part of the memory hierarchy. On the other hand, 

because the cache is supposed to be very fast, we can include the hit time in 

the CPU execution time as the item sought in the cache will be delivered 

very quickly, maybe during the same execution cycle. As a matter of fact 

this is the widely accepted convention. 

 

Memory_stalls will include the stall due to misses, for reads and writes: 

Memory_stalls = Mem_accesses_per_program * miss_rate * miss_penalty 

We now get for the CPUtime: 

CPUtime = (CPUexec + Mem_accesses_per_program*miss_rate*miss_penalty)*Tck 

which can be further modified by factoring the IC (Instruction Count): 

CPUtime = IC*(CPIexec + Mem_accesses_per_instruction*miss_rate*miss_penalty)*Tck 

The above formula can be also written using misses per instruction as: 

CPUtime = IC*(CPIexec + Misses_per_instruction*miss_penalty)*Tck 
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Example 8.6 CPU PERFORMANCE WITH CACHE AND CPI: 

 

The CPI for a CPU is 1.5, there are on the average 1.4 memory accesses 

per instruction, the miss rate is 5%, and the miss penalty is 10 clock cycles. 

What is the performance if the cache is considered? 

 

Answer: 
CPUtime = IC*(CPIexec + Mem_accesses_per_instruction*miss_rate*miss_penalty)*Tck 

CPUtime (with cache) = IC*(1.5 + 1.4*0.05*10)*Tck = IC*2.2*Tck 

This means an increase in CPUtime by 46%. 

Note that for a machine with lower CPI the impact of the cache is more 

significant than for a machine with a higher CPI. 

Example 8.7   CPU PERFORMANCE WITH CACHE, CPI AND CLOCK RATES: 

 

The same architecture is implemented using two different technologies, 

one which allows a clock cycle of 20ns and another one which permits a 

10ns clock cycle. Two systems, built around CPUs in the two technologies, 

use the same type of circuits for their main memories: the miss penalty is, 

in both cases, 140ns. How does the cache behavior affect the CPU 

performance? Assume that the ideal CPI is 1.5, the miss rate is 5%, and 

there are 1.4 memory accesses per instruction on average. 

 
Answer: 
CPUtime = IC*(CPIexec + Mem_accesses_per_instruction*miss_rate*miss_penalty)*Tck 

 

For the CPU running with a 20ns clock cycle, the miss penalty is 140/20 = 

7 clock cycles, and the performance is given by: 

 
CPUtime1 = IC*(1.5 + 1.4*0.05*7)*Tck1 = IC*1.99*Tck1 

 

 

 
 

The following example presents the impact of the cache for a system with a 

lower CPI (as is the case with pipelined CPUs): 
 

 

The following example shows the impact of the cache on system with 

different clock rates. 
 

CPUtime (with cache) = IC*(7 + 2.5*0.05*10)*Tck = IC*8.25*Tck 

The IC and Tck are the same in both cases, with and without cache, so the 

result of including the cache's behavior is an increase in CPUtime by 

8.25 
---------- – 1 = 17.8% 

7 
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Example 8.7 clearly points out that the cache behavior gets more important 

while CPU are running faster. Neglecting the cache may completely 

compromise the performance of a CPU. For a given instruction set and a 

specified program the CPIexec can be measured; the Instruction Count can 

also be measured, and Tck is known for the given machine. Reducing the 

CPUtime can be achieved by: 

 

• reducing the miss rate: the easy way is to increase the cache size; 

however there is a serious limitation in doing so for on-chip 

caches: the space. Most on-chip caches are only a few kilobytes in 

size. 

 

•  reducing the miss penalty: for most cases the access time 

dominates the miss penalty; while the access time is given by the 

technology used for memories, and, as a result can not be easily 

lowered, it is possible to use intermediate levels of cache between 

the internal cache (on-chip) and main memory. 

 

Here is a short description of internal caches for several popular CPUs: 

 

CPU Instruction Data 

Intel 80486 8 KB 

Motorola 68040 4 KB 4 KB 

Intel PENTIUM 8 KB 8 KB 

DEC Alpha 8 KB 8 KB 

Sun MicroSPARC 4 KB 2 KB 

Sun SuperSPARC 20 KB 16 KB 

Hewlett-Packard PA 7100 - - 

MIPS R4000 8 KB 8 KB 

MIPS R4400 16 KB 16 KB 

PowerPC 601 32 KB 

The effect of the cache, for this machine, is to stretch the execution time by 
32%. For the machine running with a 10 ns clock cycle, the miss penalty is 

140/10 = 14 clock cycles, and the performance is: 

 

CPUtime2 = IC*(1.5 + 1.4*0.05*14)*Tck2 = IC*2.48*Tck2 

The cache increases the CPUtime, for this machine, by 65%. 
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 Sources for Cache Misses 

 
Misses in a cache can have one of the three following sources: 

 

• compulsory: when the program starts running the cache is empty 

(no block for that program yet); 

 

• capacity: if the cache does not contain all the blocks needed for 

the execution of the program, then some blocks will be replaced 

and then, later, brought back into the cache; 

 

• conflict: this happens in direct mapped and set associative caches 

if too many blocks map to the same position. 

 

There is little to do against compulsory misses: increasing the block size 

reduces indeed the number of compulsory misses as the cache will be filled 

faster; the drawback is that bigger blocks may increase the number of 

conflict misses as there are fewer blocks in the cache. 

 

Conflict misses seem to be easiest to resolve: a fully associative cache has 

no conflicts. However full associativity is very expensive in terms of 

hardware: more hardware tends to slow down the clock, yielding an overall 

poorer performance. 

 

As for capacity misses, the solution is larger caches, both internal and 

external. If the cache is too small to fit the requirement of some program, 

then most of the time will be spent in transferring blocks between the cache 

and the lower level of the hierarchy; this is called trashing. A trashing 

memory hierarchy has a performance that is close to that of the memory in 

the lower level, or even poorer due to misses overhead. 

 

 
 Unified Caches or Instruction/Data Only? 

 
Initial caches were meant to hold both data and instructions. This caches 

are called unified or mixed. It is possible however to have separate caches 

for instructions and data, as the CPU knows if it is fetching an instruction 

or loading/storing data. Having separate caches allows the CPU to perform 

an instruction fetch at the same time with a data read/write, as it happens in 

pipelined implementations. As the table in section 8.6 shows, most of the 

today’s architectures have separate caches. Separate caches give the 

designer the opportunity to separately optimize each cache: they may have 

different sizes, different organizations, and block sizes. The main 

observation is that instruction caches have lower miss rates as data caches, 

for the main reason that instructions expose better spatial locality than data. 



Exercises 

  

155 

 

 

 

Exercises 

 
Draw a fully associative cache schematic. Which are the 

hardware resources besides the ones required by a direct mapped 

cache? You must pick some cache capacity and some block size. 

 

Redo the design in problem 8.1 but for a 4-way set associative 

cache. Compare your design with the fully associative cache and 

the direct mapped cache. 

 

Design a 16 KB direct mapped cache for a 32 bit address system. 

The block size is 4 bytes (1 word). Compare the result with the 

result in Example 8.3. 

 

Design (gate level) a 4 bit comparator. While most MSI circuits 

provide three outputs indicating the relation between the A and B 

inputs (A > B, A 

= B, A < B), your design must have only one output which gets active (1) 

when the two inputs are equal. 

 

Assume you have two machines with the same CPU and same 

main memory, but different caches: 

cache 1: a 16 set, 2-way associative cache, 16 bytes per block, write 

through; 

cache 2: a 32 lines direct mapped cache, 16 bytes per block, write 

back. 

Also assume that a miss takes 10 longer than a hit, for both machines. A 

word write takes 5 times longer than a hit, for the write through cache; the 

transfer of a block from the cache to the memory takes 15 times as much as 

a hit. 

a) write a program that makes machine 1 run faster than machine 2 (by as 

much as possible); 

b) write a program that makes machine 2 run faster than machine 1 (by as 

much as possible). 
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Write Through and Write Back in Cache 

 

Cache is a technique of storing a copy of data temporarily in rapidly accessible storage memory. 

Cache stores most recently used words in small memory to increase the speed in which a data 

is accessed. It acts like a buffer between RAM and CPU and thus increases the speed in which 

data is available to the processor. 

Whenever a Processor wants to write a word, it checks to see if the address it wants to write 

the data to, is present in the cache or not. If address is present in the cache i.e., Write Hit. 

We can update the value in the cache and avoid a expensive main memory access.But this 

results in Inconsistent Data Problem.As both cache and main memory have different data, it 

will cause problem in two or more devices sharing the main memory (as in a multiprocessor 

system). 

This is where Write Through and Write Back comes into picture. 

 

Write Through: 

 

In write through, data is simultaneously updated to cache and memory. This process is simpler and 

more reliable.This is used when there are no frequent writes to the cache(Number of write operation is 

less). 

https://www.geeksforgeeks.org/cache-memory-in-computer-organization/


It helps in data recovery (In case of power outage or system failure). A data write will experience latency 

(delay) as we have to write to two locations (both Memory and Cache). It Solves the inconsistency 

problem. But it questions the advantage of having a cache in write operation (As the whole point of using 

a cache was to avoid multiple accessing to the main memory). 

Write Back: 

 

 

The data is updated only in the cache and updated into the memory in later time. Data is updated in the 

memory only when the cache line is ready to replaced (cache line replacement is done using Belady’s 

Anomaly, Least Recently Used Algorithm, FIFO, LIFO and others depending on the application). 

Write Back is also known as Write Deferred. 

If write occurs to a location that is not present in the Cache(Write Miss), we use two options, Write 

Allocation and Write Around. 

 

 

 



Write Allocation 

 

In Write Allocation data is loaded from the memory into cache and then updated. Write allocation works 

with both Write back and Write through.But it is generally used with Write Back because it is unnecessary 

to bring data from the memory to cache and then updating the data in both cache and main memory. 

Thus Write Through is often used with No write Allocate. 

Write Around: 

 

Here data is Directly written/updated to main memory without disturbing cache.It is better to use this when 

the data is not immediately used again. 


